
Process

Process

Model

input

-

output

Residual generation

Residual

evaluation
+ Knowledge

of faults

ITEA Review: EMPHYSIS #3

Introduction

Feb. 10, 2021 (13.00 – 17.00), Web-Meeting

2

EMPHYSIS Consortium

 Germany

 Bosch1,3

 DLR2

 ETAS

 ESI ITI

 AbsInt

 PikeTec

 dSPACE

 EFS

 Sweden

 Dassault Systèmes AB3

 Volvo Cars

 Modelon

 Linköping University

 SICS East

* w/o funding
1) Project Lead
2) Technical Coordination
3) National Coordination

 OEM Advisory Board

 BMW

 Daimler

 Mazda

 Volvo Trucks

 JSAE

 France

 Siemens SAS3

 Dassault Systèmes SE

 Renault

 CEA

 University of Grenoble

 FH Electronics

 OSE

 Soben

 Belgium

 Siemens NV3

 Dana

 University of Antwerp

 Canada*

 Maplesoft3

Large SME Research

Germany 5 2 1

France 3 3 2

Sweden 2 1 2

Belgium 2 1

Canada* 1

Project Overview

4

Project Overview

Bridge the gap

Modeling & Simulation Embedded Software

SW

5

Project Overview

Bridge the gap

Modeling & Simulation Embedded Software

SW

6

Physical Model

Online physical models key technology

for advanced engine control software:

 virtual sensors, i.e., observers,

 model-based diagnosis,

 inverse physical models as feed forward

part of control structures, and

 model predictive control.

Physical models:

 Typically described by differential equations, best suited for dynamics

 Complementary to data-based modeling, can be combined

 Reduced calibration effort due to physical parameters

Project Overview

Physical models for embedded software

Observer

Sensor Output

Process

Control

Function

Output

Input

Process

Model

Virtual Sensor

7

What is new?

State-of-the-art

Physical Modeling

(Domain Knowledge,

Physical Principles &

Phenomena, System

Dynamics, Model

Validation, …)

Control Engineering

(System Theory, Stability,

Robustness, …)

Numerics

(Algorithms, Complexity,

Stability, Precision, Realtime

Performance…)

Function DeveloperSuper Hero

ECU Software

(MISRA, ASIL, MSR,

AUTOSAR, …)

8

What is new?

New standard, new tool chains, new ways of collaboration

Physical Modeling Expert Control Engineer ECU Software Developer
Numerical Services

Model Libraries

9

Project Overview

The eFMI workflow

Process

Process

Model

input

-

output

Residual generation

Residual

evaluation
+ Knowledge

of faults

Physical
Model

.bin

Controller
Model

Production
Code

ECU
Software

ECU
Application

10

 Specialized hardware: µController

 Limited data memory and code memory, static memory allocation.

 Single precision due to restricted data types (fixed-point, float).

 High safety requirements on the software:

 Special coding guidelines, e.g., MISRA rules,

 No exception handling (NaN, Division-by-zero,…),

 Inbound guarantees.

 Hard realtime requirements on cyclic tasks:

 Guaranteed execution time.

 Limited smallest possible sampling rate (typically 1ms).

 Special realtime operating systems (AUTOSAR-OS)

 Specialized tools and tool chains (compilers etc.)

Project Overview

Special requirements of automotive embedded systems

AUTOSAR architecture

Motor Industry Software Reliability Association

Bosch MDG1 ECU:
current multi-core ECU

Application Layer (ASW)

Run Time Environment (RTE)

AUTOSAR Basic Software (BSW)

ECU Hardware

11

 Specialized hardware: µController

 Limited data memory and code memory, static memory allocation.

 Single precision due to restricted data types (fixed-point, float).

 High safety requirements on the software:

 Special coding guidelines, e.g., MISRA rules,

 No exception handling (NaN, Division-by-zero,…),

 Inbound guarantees.

 Hard realtime requirements on cyclic tasks:

 Guaranteed execution time.

 Limited smallest possible sampling rate (typically 1ms).

 Special realtime operating systems (AUTOSAR-OS)

 Specialized tools and tool chains (compilers etc.)

Project Overview

Special requirements of automotive embedded systems

AUTOSAR architecture

Motor Industry Software Reliability Association

Bosch MDG1 ECU:
current multi-core ECU

Application Layer (ASW)

Run Time Environment (RTE)

AUTOSAR Basic Software (BSW)

ECU Hardware

12

Increase Productivity

 Reuse

 Model Libraries

 Numerical Service Functions

 Automation

 Model Transformations

 Code Generation

 Seamless Tool Chain

Master Complexity

 Software Design

 Abstraction

 Encapsulation

 Separation of Concerns

 Physical Behavior

 Data Flow

 Embedded Code

Software Innovations

 Tool Vendors

 Added Value

 Expand Market in MBD Domain

 Supplier/OEM

 New Advanced Functions

 Replace HW with SW

 New Modes of Collaboration

Project Overview

Business impact

Physical Model

Bosch VCU

Physical Modeling & Simulation ECU Software Development

Component

Libraries

Data Flow

Process

Process

Model

input

-

output

Residual generation

Residual

evaluation
+ Knowledge

of faults Production Code

Services

Functions RTPC, e.g. ETAS RTPC

.bin

Bosch ECU

ESP

13

 eFMI Standard

 Exchange format from physical models to embedded software.

 eFMI Workflow  Tool Chain

 eFMI supporting tools through all stages

 eFMI Demonstrators

 Mature prototypes close to product release.

 Better than state of the art performance.

 Proven benefits for model-based control applications.

 New innovative solutions enabled by eFMI.

 New products, services, collaborations after project end.

Project Overview

Main Goals

Key Achievements

Key Achievements -

Specification

16

eFMI Specification

Introduction

eFMI Specification 1.0.0-alpha.3

available for public review:

https://emphysis.github.io/

Provided to FMI group in 2020

and incorporated their feedback.

Formal standardization process

via the Modelica Association

started.

Expected to be released as a

Modelica Association standard

in 2-3 months.

https://emphysis.github.io/

17

eFMI Specification

Overview (chapter 3-6)

Verification of
eFMI C-Code

Testing of
eFMI C-Code

Software-in-the-Loop
Simulation (SiL)

Causal and acausal modeling tools

Model
(Modelica, Simulink,

syq,...)

Algorithm Code
eFMU

(𝒚𝑖+1, 𝒙𝑖+1) ∶= 𝒇𝐷𝐸𝑆 𝒙𝑖, 𝒖𝑖

TransformTransform

Execution in
Target Env.

(compiled prod. C-Code)

Binary Code
eFMU

PC binary + SOA app +
target specific binary

TransformProduction Code
eFMU

production C-Code +
FMI for Co-Sim. C-wrapper

ECU

Realtime-PC

Rapid Prototyping Systems

AUTOSAR

AUTOSAR Adaptive

...

Behavioral Model
eFMU

Reference results: (𝑡𝑖 , 𝒖𝑖 , 𝒚𝑖)

Simulations of
Model

GALEC-code +

XML manifest
Target-independent,

algorithmic (i.e., causal)

intermediate language

for sampled-data systems

C-code +

XML manifestchapter of
eFMI specification

csv-files +

XML manifest

Abbreviations
eFMI: Functional Mockup Interface for Embedded systems
eFMU: Functional Mockup Unit for Embedded systems
GALEC: Guarded Algorithmic Language for Embedded Control

→ eFMI Standardization in

order that tools can work

seemlessly together

Chapter 3

Chapter 4 Chapter 5 Chapter 6

Typically a-causal,

equation-based

physics description

(e.g., Modelica)

object-code +

XML manifest

18

eFMI Specification

Container Architecture (chapter 2)

Classic Co-Simulation-FMU

eFMU

Model
Description

Binary /
Source
Code

Manifest

Production
Code

C-code

Manifest

Algorithm
Code

GALEC
code

…

eFMU Manifest

Target 1Target
independent

…

eFMU root

Different packaging formats:
Example: FMU packed

Software-in-the-Loop-Simulation
with every FMU tool

Manifest:
Description of the interface of the associated
code and additional meta information on how to
access and utilize the code.

Model
Description:
Legacy meta
information
describing the
model interface
in the standard
FMI format.

Manifest

Behavioral
Model

csv files

Reference
results

Manifest

Production
Code

C-code

Target N

Manifest

Binary
Code

Object
code

Manifest

Binary
Code

Object
code

… Target 1 Target M…

19

eFMI Specification

Overview (chapter 3-6)

Verification of
eFMI C-Code

Testing of
eFMI C-Code

Software-in-the-Loop
Simulation (SiL)

Causal and acausal modeling tools

Model
(Modelica, Simulink,

syq,...)

Algorithm Code
eFMU

(𝒚𝑖+1, 𝒙𝑖+1) ∶= 𝒇𝐷𝐸𝑆 𝒙𝑖, 𝒖𝑖

TransformTransform

Execution in
Target Env.

(compiled prod. C-Code)

Binary Code
eFMU

PC binary + SOA app +
target specific binary

TransformProduction Code
eFMU

production C-Code +
FMI for Co-Sim. C-wrapper

ECU

Realtime-PC

Rapid Prototyping Systems

AUTOSAR

AUTOSAR Adaptive

...

Behavioral Model
eFMU

Reference results: (𝑡𝑖 , 𝒖𝑖 , 𝒚𝑖)

Simulations of
Model

GALEC-code + XML manifest

Target-independent,

algorithmic (i.e., causal)
intermediate language

for sampled-data systems

C-code +

XML manifest

csv-files +

XML manifest

Abbreviations
eFMI: Functional Mockup Interface for Embedded systems
eFMU: Functional Mockup Unit for Embedded systems
GALEC: Guarded Algorithmic Language for Embedded Control

Chapter 3

Chapter 4 Chapter 5 Chapter 6

Typical a-causal,
equation-based

physics

description

(e.g., Modelica)

object-code +

XML manifest

find causal,
upper-

bounded
solution-
algorithm

20

eFMI Specification

Overview (chapter 3-6)

Verification of
eFMI C-Code

Testing of
eFMI C-Code

Software-in-the-Loop
Simulation (SiL)

Causal and acausal modeling tools

Model
(Modelica, Simulink,

syq,...)

Algorithm Code
eFMU

(𝒚𝑖+1, 𝒙𝑖+1) ∶= 𝒇𝐷𝐸𝑆 𝒙𝑖, 𝒖𝑖

TransformTransform

Execution in
Target Env.

(compiled prod. C-Code)

Binary Code
eFMU

PC binary + SOA app +
target specific binary

TransformProduction Code
eFMU

production C-Code +
FMI for Co-Sim. C-wrapper

ECU

Realtime-PC

Rapid Prototyping Systems

AUTOSAR

AUTOSAR Adaptive

...

Behavioral Model
eFMU

Reference results: (𝑡𝑖 , 𝒖𝑖 , 𝒚𝑖)

Simulations of
Model

GALEC-code
= guarded algorithmic language

for embedded control

= program guarantees

= guards the following tool chain

C-code +

XML manifest

csv-files +

XML manifest

Abbreviations
eFMI: Functional Mockup Interface for Embedded systems
eFMU: Functional Mockup Unit for Embedded systems
GALEC: Guarded Algorithmic Language for Embedded Control

Chapter 3

Chapter 4 Chapter 5 Chapter 6

Typical a-causal,
equation-based

physics

description

(e.g., Modelica)

object-code +

XML manifest

find causal,
upper-

bounded
solution-
algorithm

21

GALEC: Guarded Algorithmic Language for Embedded Control

 Target-independent, intermediate representation for bounded algorithms with multi-dimensional real arithmetics

 Imperative / causal language

 Safe – embedded & real-time suited – semantics

 Safe floating-point numerics

 Built-in mathematical functions

(e.g. sin, cos, interpolation 1D & 2D, solve linear equation systems)

eFMI Specification

GALEC (chapter 3)

22

Safe – embedded & real-time suited – semantics

 Upper bound on number of operations

 Statically known sizes (vectors, matrices etc.)

⇒ statically know resource requirements

⇒ exception free runtime semantic

 Well-bounded indexing

⇒ never out-of-bounds / illegal memory accesses

 By value semantics with only well-defined & never competing side-effects

⇒ Huge potential for parallel execution

(e.g., SIMD on multi-dimensions)

eFMI Specification

GALEC (chapter 3)

Language guarantees
⇒ satisfied by every

GALEC program
⇒ following eFMI tool

chain can leverage on

23

Safe floating-point numerics

 Ranged variables & implicit limitation at start/end of sample period

 Guaranteed qNaN (quiet-Not-a-Number) & error signal propagation

+ control-flow integrated error signal handling

⇒ No undetected errors

⇒ Enables back-up strategy at end of algorithm in case of

any unexpected errors

eFMI Specification

GALEC (chapter 3)

Language guarantees
⇒ satisfied by every

GALEC program
⇒ following eFMI tool

chain can leverage on

Key Achievements -

Tooling

25

 The eFMI workflow is supported by these categories of tools

 Modeling & simulation tools (WP4)

 Embedded software tools (WP5)

 Verification & validation tools (WP6)

 Tool prototyping running in parallel with the eFMI specification work from the start

 Cross-testing of tools in close collaboration between WP4/5/6

 Test cases developed in WP7.1 were used to verify tool coverage

 Several eFMI plug fests were organized for efficient interactions between tool vendors

 eFMI Compliance Checker developed to support tool implementations

Tool Prototypes

Introduction

26

TargetLink (dSPACE)
ESP (DS)

SCODE-CONGRA (ETAS)

Verification of
eFMI C-Code

Astrée (AbsInt)
CSD (Siemens)

Testing of
eFMI C-Code

TPT (PikeTec)

Software-in-the-Loop
Simulation (SiL)

Causal and acausal modeling tools

AUTOSAR Adaptive
MDG1 ECU (Bosch)
Pre-devel. ECU (EFS)
ECU (KW-automotive)
Realtime-PC

Acausal tools

OMC (LiU)
SCODE-CONGRA (ETAS)

• inputs + outputs
• integrator
• interfaces of services functions

• generic or specific target configuration
(access of variables, services functions, ...)

• extract prod. C-code
• link service functions
• compile + integrate

Acausal tools in EMPHYSIS:
Dymola (Dassault Systèmes)
OpenModelica Compiler (LiU)
SCODE-CONGRA (ETAS)
SimulationX (ESI ITI)
OPTIMICA (Modelon) – under dev.

Acausal/causal tools

Causal tools in EMPHYSIS:
Amesim (Siemens SAS)
Simulink (Mathworks)

Model in EMPYHSIS:
• Physical model (e.g. vehicle model)
• Controller, estimator, ...
• Diagnosis system, neural network, ...
• Any combination from above

Further tool chains (not shown above):
• Physical model is transformed to eFMI Algorithm-Code

which is used in a (controller/...) model from
which eFMI Algorithm-Code is generated.

• Production C-Code may be directly generated from eFMI Algorithm Code.
• Embedded software architecture - design space exploration

Amesim (Siemens)
Dymola (DS)

SimulationX (ESI ITI) ESP + AUTOSAR Builder (DS)

SCODE-CONGRA (ETAS)

Model
(Modelica, syq,

Simulink, ...)

Algorithm Code
eFMU

(𝒚𝑖+1, 𝒙𝑖+1) ∶= 𝒇𝐷𝐸𝑆 𝒙𝑖, 𝒖𝑖

Equation Code
eFMU

𝟎 = 𝒇𝐷𝐴𝐸 ሶ𝒙, 𝒙, 𝒚, 𝒖 Transform

Transform

Transform

Execution in
Target Env.

(compiled prod. C-Code)

Transform Binary Code
eFMU

PC binary + SOA app +
target specific binary

TransformProduction Code
eFMU

production C-Code +
FMI for Co-Sim. C-wrapperTransform

Tool Prototypes

EMPHYSIS Workflow – Tool Positioning

27

Tool Name Vendor EquCode AlgCode ProdCode BinaryCode

Amesim Siemens

Dymola Dassault Systèmes

OPTIMICA Compiler Toolkit Modelon

OpenModelica Linköping University

SimulationX ESI-ITI

SCODE-CONGRA ETAS

AUTOSAR Builder Dassault Systèmes

TargetLink dSPACE

Astrée AbsInt

CSD Siemens

TPT PikeTec

CATIA ESP Dassault Systèmes

QuaRTOS-DSE CEA

Import Export

Prototype Under dev. Prototype Under dev.

Tool Prototypes

Support for eFMI Import and Export

28

 An open-source library for:

 Verifying the eFMU architecture

 Consistency checking of all model representation manifests

 Validating the GALEC code against the specification

 Implemented in Python:

 Fully documented

 Easy to update and extend

 Will be hosted on the Modelica Association Github repositories

 Will be provided to the PyPI repository

Tool Prototypes

eFMI Compliance Checker

eFMU Architecture check

GALEC code validation

AlgorithmCode

EquationCode

BehavioralModel

Consistency
Check

29

Tool Prototypes

eFMI Compliance Checker

Consistency
Check

eFMUs
vendor Total

Consistency
Check

GALEC code
validation

Amesim 3 3 3

Dymola 29 29 29

SimulationX 27 27 27

Test results and number

of eFMUs that passed

the compliance check:

KPI5: The eFMI compliance checker

prototype (D6.1) does not report

errors to at least 90% of the eFMI

test components exported by all

tool prototypes of WP4.

100%

Key Achievements -

Test cases

31

Test cases:

 Modelica library with 22 test cases containing 43 variants

 3 Amesim models

 2 manual GALEC codes

Features and Challenges:

 Inverse model or feedback linearization based controllers

 Explicit and implicit integration schemes

 Event-based re-initialization of continuous states

 Neural networks

 Important built-in functions:
 Solving linear equation systems

 1-D and 2-D interpolation of tables

 Error handling

 Implicit saturation

Tool Prototypes

Test Cases and Test Coverage – Demonstrator D7.1

32

eFMI toolchain for test cases:

 9 commercial tools

 50 toolchain paths

 Common GIT repository for

eFMU-exchange and

reports (~ 7 GB)

 11 two-day plug fests

 to test tool compatibility

 to enhance eFMI

specification

Tool Prototypes

Test Cases and Test Coverage – Demonstrator D7.1

48 variants

67 eFMUs

201 eFMUs

402 analysis cases 538 test scenarios

206 eFMUs

33

Tool Prototypes

Test Cases and Test Coverage – Demonstrator D7.1

34

Problem Statement:

 Embedded performance is crucial for user acceptance.

Objective

 Evaluation of the eFMI tool chain results against state-of-the-art embedded SW development.

Targeted Results

 KPI 8: Performance against state of the art (manual) implementation

- At least 5 times less time to deliver model/controller function.

- At most 25% less efficient code.

- At most 25% more memory consumption.
(25 % increased overhead is acceptable due to the large increase in development efficiency and the expected increase in computing power and available memory in the next years.)

 KPI 11: Gain in productivity [ΔPY/PY %]

- Acceleration by >20%.

EMPHYSIS Demonstrators

D7.2 eFMI Performance Assessment (Bosch)

Key Achievements -

Performance Assessment

36

EMPHYSIS Demonstrators

D7.2 eFMI Performance Assessment (Bosch)

Model
(Modelica Library)

Algorithm Code
eFMU

(𝒚𝑖+1, 𝒙𝑖+1) ∶= 𝒇𝐷𝐸𝑆 𝒙𝑖, 𝒖𝑖

ESP (DS)
SCODE-CONGRA (ETAS)

TargetLink (dSPACE)

TransformTransform

Execution on
Target

(compiled prod. C-Code)

Transform

Production Code
eFMU

production C-Code +
FMI for Co-Sim. C-wrapperDymola (DS)

SimulationX (ESI-ITI)

6 Benchmark Test Cases
(out of 22 EMPHYSIS Test Cases)

Automated Performance Test
Environment (Bosch)

Bosch ECU

MDG1

Performance
Benchmark

Name Difficulty* Challenge

M03 PID low Minimal footprint incl. saturated IOs

M04 Drivetrain medium Inverse linear physical model

M15 Air System medium Stiff ODE with delay operator

M10 Inverse Slider Crank high Inverse non-linear physical model (DAE Index-1)

M16 ROM high High dimensional maps, solve a large linear eq system

M14 Rectifier high Advanced symbolic transformation to compact ODE form

*Difficulty for an automated procedure to achieve same quality as manual implementation.

37

ECU Runtime Performance:

 In all cases the eFMI generated code is

below the +25% KPI margin.

 In 5 of 6 examples an eFMI exists that

outperforms the hand code.

 In average the best performing eFMUs are

26% faster than the hand code.

EMPHYSIS Demonstrators

D7.2 eFMI Performance Assessment (Bosch)

Name Difficulty* Average Min. Max.
M03 PID low -7% -27% +29%

M04 Drivetrain medium +9% -21% +44%

M15 Air System medium +38% -7% +132%

M10 Inverse Slider Crank high -65% -66% -64%

M16 ROM high +4% +1% +6%

M14 Rectifier high +3% -33% +44%

Average -3% -26% 32%

0.00%

25.00%

50.00%

75.00%

100.00%

125.00%

M03_B M04_A M10_B M14_A M14_B M15_A M16_A

ECU Runtime Performance

manual

eFMI

KPI

*Difficulty for an automated procedure to achieve same quality as manual implementation.

Relative ECU Runtime

M14 in both variants

Graphical modeling:
 high level of reuse
 component-oriented

Textual modeling
 compact formulation

38

ECU Memory Consumption:

 In 3 of 6 cases an eFMU is below the +25% KPI

w.r.t. code memory.

 In 4 of 6 cases an eFMU is below the +25% KPI

w.r.t. data memory.

 In 4 of 6 cases an eFMU outperforms the hand

code.

 In average the best performing eFMU requires

 39% more code memory

 9% less data memory

than the hand code.

EMPHYSIS Demonstrators

D7.2 eFMI Performance Assessment (Bosch)

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

400.00%

M03_B M04_A M10_B M14_A M14_B M15_A M16_A

M
em

o
ry

 in
 B

yt
es

Code Memory by Workflow

manual

eFMI

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

180.00%

200.00%

M03_B M04_A M10_B M14_A M14_B M15_A M16_A

M
em

o
ry

 in
 B

yt
es

Data Memory by Workflow

manual

eFMI

KPI

KPI

39

EMPHYSIS Demonstrators

D7.2 eFMI Performance Assessment (Bosch)

9
3

%

9
2

% 8
8

%

-1
3

%

5
2

%

1
8

%

-20%

0%

20%

40%

60%

80%

100%

0

20

40

60

80

100

120

140

Manual eFMI Manual eFMI Manual eFMI Manual eFMI Manual eFMI Manual eFMI

PID Drivetrain Inverse Slider Crank Rectifier Air System ROM

M03 M04 M10 M14 M15 M16

D
ev

el
o

p
m

en
t

Ef
fo

rt
 [

h
]

eFMI Productivity Gain

Modeling Embedded Implementation Validation

40

Conclusion

 Applications with component-oriented models (M03, M04, M10) show

 an eFMI development productivity gain of ~90%

 with a speed-up in runtime of ~40%

 and better or reasonable memory consumption.

 Textually implemented Modelica models (M14, M15, M16) show

 an eFMI development productivity gain of ~20%

 and allow to provide solutions that outperform the hand coded solutions also for difficult systems.

 The configuration of the code generators allows to chose the best trade-off between runtime

performance and memory consumption for the application.

EMPHYSIS Demonstrators

D7.2 eFMI Performance Assessment (Bosch)

Better code, less effort!

Key Achievements –

Comprehensive Industrial Demonstrators

42

D7.12 DLR Demonstrator D7.07 GipsaLabD7.10 Siemens Dana Demonstrator

Binary Code

OEM

Semic-active damping controller
with nonlinear inverse model and
nonlinear Kalman filter

Advanced Emergency Braking System controller

Hybrid engine torque prediction using
scale model Neural Network

Kalman Filter air filling estimation using scale
model Neural Network predictor

D7.06 Renault Demonstrator

Dual-Clutch Transmission Diagnosis
Seamless production code build process with
multiple step implicit integrator

Vehicle dynamics control by Parameterized Nonlinear
Model Predictive Control for semi-active control with
Neural Network prediction model

Transmission model as virtual sensor

EMPHYSIS Demonstrators

eFMI
Binary
Code

eFMI
Prediction
Model

D7.3 Powertrain Vibration Reduction D7.2 eFMI Performance Assessment

D7.4 Model-based Diagnosis of
Thermo System

eFMI
DAE Eq.
Code

D7.14 Dassault Systèmes Demonstrator

D7.07 GipsaLab

D7.08 Daimler Demonstrator D7.13 Volvo Demonstrator

43

Demonstrators Presentations

D7.12 DLRD7.10 Siemens Dana Demonstrator

D7.06 Renault

D7.3 Powertrain Vibration Reduction D7.2 eFMI Performance Assessment

D7.4 Model-based Diagnosis of Thermo System

D7.14 Dassault Systèmes

D7.08 Daimler D7.13 Volvo

D7.07 GipsaLab

D7.05 Renault

Advanced Emergency Braking
System controller

Powertrain Vibration Reduction

Model-based Diagnosis of Thermo System

Hybrid engine torque prediction using
scale Neural Network model

Semic-active damping controller with
nonlinear inverse model and nonlinear Kalman filter

Vehicle dynamics pNMPC for semi-active control
with Neural Network prediction model

Six different use cases from simple PID control
to complex physical ODE model

Kalman Filter TDC air filling estimation using
scale Neural Network predictor model

Throttle high frequency position
estimation using scale NN predictor model

Dual-Clutch Transmission Diagnosis using
multiple step implicit integrator

Transmission model as virtual sensor

44

 eFMI Specification – Alpha version published

 Formal standardization process started via the Modelica Association

Expected to be released as a Modelica Association standard within 2-3 months

 Open-source Modelica library EMPHYSIS_TestCases to be released by end of Feb.

Facilitating qualified cross-checking of the toolchain

 13 tools are currently supporting different parts of the eFMI standard

 eFMI Compliance Checker available to support further adoption of the standard

 Extensive test library with 22 test cases containing 43 variants

 Excellent performance results

 Comprehensive industrial demonstrators of varying eFMI application scenarios

EMPHYSIS Key Achievements

Summary

Synopsis

46

 eFMI Standard

 Exchange format from physical models to embedded software.

 eFMI Workflow  Tool Chain

 eFMI supporting tools through all stages

 eFMI Demonstrators

 Mature prototypes close to product release.

 Better than state of the art performance.

 Proven benefits for model-based control applications.

 New innovative solutions enabled by eFMI.

 New products, services, collaborations after project end.

Synopsis

Main Goals

The journey has just begun!

